Study on extremely high temperature gradient at entrance of solid oxide fuel cell by preheating model

نویسندگان

چکیده

<sec>The degradation or failure caused by thermal stress is a serious problem for solid oxide fuel cell (SOFC), especially in preheating process. The common working temperature SOFC more than 700 ℃, so it should be preheated to startup (e.g. 600 ℃). induced gradient crucial factor that results the of SOFC, therefore there are many studies on optimization process.</sec><sec>Numerical model an important tool study process, however exists discrepancy between and experimental results. numerical always gives very high which can result crack according material permissible stress, this disagrees with practical result. In paper, hot gas developed verified comparing from literature. Then, location maximum distribution studied model, extremely at entrance analyzed. Some conclusions given below.</sec><sec>1) located edge nearby entrance. variation rise rate velocity show negligible effect position flow direction. For single channel method, dual cathode whatever feeding way co-flow counter-flow, because conductivity lowest.</sec><sec>2) There entrance, sharply decreases along flowing direction small section. may uniform inlet set greatly enhance heat transfer component due large difference section.</sec><sec>3) extension give fully reduce however, section temperature. Therefore, as criterion safety overestimate analyzed together optimize process.</sec>

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a study on insurer solvency by panel data model: the case of iranian insurance market

the aim of this thesis is an approach for assessing insurer’s solvency for iranian insurance companies. we use of economic data with both time series and cross-sectional variation, thus by using the panel data model will survey the insurer solvency.

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Study on Sm1.8Ce0.2CuO4–Ce0.9Gd0.1O1.95 composite cathode materials for intermediate temperature solid oxide fuel cell

Sm1.8Ce0.2CuO4–xCe0.9Gd0.1O1.95 (SCC–xCGO, x = 0–12 vol.%) composite cathodes supported on Ce0.9Gd0.1O1.95 (CGO) electrolyte are studied for applications in IT-SOFCs. Results show that Sm1.8Ce0.2CuO4 material is chemically compatible with Ce0.9Gd0.1O1.95 at 1000 °C. The composite electrode exhibits optimum microstructure and forms good contact with the electrolyte after sintering at 1000 °C for...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

A two-dimensional numerical model of a planar solid oxide fuel cell

A two-dimensional CFD model of a planar solid oxide fuel cell (SOFC) has been developed.This model can predict the performance of SOFC at various operating and design conditions.The effect of Knudsen diffusion is accounted in the porous electrode (backing) and reaction zonelayers. The mathematical model solves conservation of electrons and ions and conservation ofspecies. The model is formulate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Physics

سال: 2022

ISSN: ['1000-3290']

DOI: https://doi.org/10.7498/aps.71.20220031